LESSON PLAN(2023-24-S)

Discipline /All Branches	Semester-2nd	Name of the teaching faculty:- Sri Sarada Ku. Nayak Sr.Lect. in (Mathematics), Math \& Sc. Deptt., GP, Sonepur
Subject:Engg. Math-II	No. of days per week-05	Semester from date:29.01.24 to 14.05.2024 No. of weeks :-15 (excluding vacation)
Week	Class day	Theory
1st	1st	Introduction to scalars and vectors, different types of vector
	2nd	Operations on vectors (addition, subtraction and multiplication of a vector by a scalar)
	3 rd	Position vector, Section formula, Illustrative examples
	4th	Components of vector in 2-D, 3-D, magnitude of vector, illustrative examples.
	5th	Distance between two points by vectors method, problem discussion
2nd	1st	Product of vectors, Scalar or doproduc of two vectors, geometrical meaning of scalar product, properties of scalar profuct
	2nd	Illustrative examples, components of vector along and perpendicular to a vector
	3rd	Illustrative examples exacise problem discussion
	4th	Angle betweentyo vectors, scalar and vector projection of two vectors
	5th	ILustratiee examples, exercise problem discussion
3rd	1st	Vector product (Cross product) of vectors, geometrical meaning and properties.
	2nd	Vector product of orthonormal triads of unit vectors, illustrative examples
	3rd	Area of triangle and parellologram, illustrative examples
	4th	Problems discussion and doubt clearing
	5th	Exercise problem discussion
4th	1st	Definition of function, domain and range of a function, types of function
	2nd	Constant function, Identity function, absolute value function
	3rd	Greatest integer function, trigonometric function
	4th	Exponential function, logarithmic function, introduction to limit
	5th	Limit of a function, left hand and right hand limit, existence of limit

5th	1st	Illustrative examples, methods o
	2nd	Direct substitution method, factorization illustrative examples
	3rd	examples and problem discussion
	4th	Standard identities:- $\text { (i) } \frac{x^{n}-a^{n}}{x-a} \text {, (ii) } \frac{a^{x}-1}{x} \text { as } x \rightarrow 0$ Illustrative examples
	5th	Limit of $\frac{e^{x}-1}{x}$ as $x \rightarrow 0$ and $\ln (1+x)$ as $x \rightarrow 0$ Illustrative examples
6th	1 st	(i) $\quad \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$ (ii) $\quad \lim _{n \rightarrow x}(1+n)^{\frac{1}{n}}=e$ Illustrative examples
	2nd	$\text { Limit of } \frac{\sin x}{x}, \frac{\tan x}{x} \text { as } x \rightarrow 0$ Illustrative examples
	3rd	Definition of continuity of frection a point and problem based on it
	4th	Illustrative examples basedran continuity
	5th	Problem disefission and doubt clearing
7th	1st	Intrgencting to differential calculus, derivative of a function at a point
	2nd	ANebra of differentiation
		$\begin{gathered} x^{n}, a^{x}, \ln (x), e^{x}, \sin (x), \cos (x), \tan (x), \cot (x), \sec (x), \operatorname{cosec}(x), \\ \sin ^{-1} \mathrm{x}, \cos ^{-1} \mathrm{x}, \tan ^{-1} \mathrm{x}, \cot ^{-1} \mathrm{x}, \sec ^{-1} \mathrm{x}, \operatorname{cosec}^{-1} \mathrm{x} \end{gathered}$
	4th	Continue
	5th	Continue
8th	1st	Continue
	2nd	Continue
	3rd	Derivative of a composite function, illustrative examples
	4th	Continue, problem discussion
	5th	Derivative of inverse trigonometric function
	1st	Continue

9th	2nd	Differentiation by trigonometric transiormation
	3 rd	Continue
	4th	Differentiability
	5th	Relation between differentiability and continuity
10th	1st	Derivative of parametric function, illustrative examples
	2nd	Derivative of implicit function, illustrative examples
	3 rd	Derivative of function w.r.t another function, illustrative examples
	4th	Logarithmic differentiation, illustrative examples
	5th	Continue
11th	1st	Problem discussion
	2nd	Successive differentiation, illustratreey amples
	3rd	Partial differentiation
	4th	Continue
	5th	Problem
12th	1st	Detiontion sf integration as inverse of differentiation
	2nd	Sarmestandard formulae of integration with examples
	3rd	General properties of integration, illustrative examples
	4th	Methods of integration, (i) Substitution Illustrative examples
	5th	Continue
13th	1st	Integration by using trigonometric identities, trigonometric substitution, illustrative examples
	2nd	Integration by parts, illustrative examples
	3rd	Integration of the form (i) $\int \frac{d x}{x^{2}+a^{2}}$, (ii) $\int \frac{d x}{x^{2}-a^{2}}$. (iii) $\int \frac{d x}{a^{2}-x^{2}}$ illustrative examples

Sarada Kumar Nayak
Sr. Lect (Math)

HOD
MATH \& SCIENCE
 GPSONPPIR

